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Curing Induced Residual Stresses in Laminated Cylindrical Shells

800-Yong Lee *
(Hankuk Aviation University)

A viscoelastic finite element analysis is presented to investigate residual stresses occurred in
a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that
can describe stress relaxation during the cure is derived as a recursive formula which can be used
conveniently for a numerical analysis. The finite element analysis program is developed on the
basis of a 3-D degenerated shell element and the first order shear deformation theory, and is
verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual
stresses in the laminated shell during the cure is investigated by performing both the viscoelastic
and linear elastic analyses considering thermal deformation and chemical shrinkage simultane­
ously. The results show that there is big difference between viscoelastic stresses and linear elastic
stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.
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1. Introduction

A residual stress occurred in fiber-reinforced
thermosetting composite materials during cure is
one of severe factors that deteriorate the perfor­
mance of a composite structure. The residual
stress can bring about matrix cracking in compos­
ites even before external loads are applied and
thus can reduce the stiffness of the composites. In
addition, since the residual stress means a pre­
loading, it can also cause the degradation of
strength. Therefore, the residual stresses induced
during cure should be considered in the design of
composite structures because they generally have
a bad effect on the stiffness and strength of the
composite structure.

During the past decade, a number of viscoelas­
tic analyses have been developed based on
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Schapery's viscoelasticity model (1967) to predict
viscoelastic behavior of composite structures.
Tuttle and Brinson (1986) developed a numerical
procedure for predicting nonlinear viscoelastic
response of laminated composites based on classi­
cal lamination theory. Henriksen (1984) devel­
oped a two dimensional finite element analysis
for nonlinear viscoelastic behavior of an isotropic
material. Roy and Reddy (1988) presented a'
similar analysis which includes large displace­
ment and moisture diffusion. Lin and Hwang
(1989) developed a two dimensional finite ele­
ment analysis for the linear viscoelastic response
of anisotropic materials. Lin and Yi (1991)
presented a similar analysis for generalized plane
strain conditions. Kennedy and Wang (1994)
presented a three dimensional finite element anal­
ysis which treats the nonlinear viscoelastic
response of laminated composites.

The first analysis on residual stresses in a ther­
mosetting matrix composite during the cure was
performed by Hahn and Pagano (1975). They
calculated linear elastic residual stresses under the
assumption that a laminate was in a stress-free
state at cure temperature immediately before cool­
down. Bogetti and Gillespie (1992) analyzed the
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cure-induced residual stresses for thick laminates
using an incremental elastic laminated plate the­
ory and investigated the effect of chemical shrink­
age on the development of residual stresses.
Hodges et al. (1989) presented an experimental
approach to find optimal curing conditions for
reducing the residual stresses of carbon fiber/
epoxy composite. White and Hahn (1991) devel­
oped a process model for the investigation of
viscoelastic residual stress development in lami­
nates during cure processing and validated the
model by the intermittent cure of unsymmetric
cross-ply laminates in which curing induced
residual curvatures were measured. Kim (1996)
introduced a viscoelastic constitutive equation
depending on degree of cure and temperature by
performing stress relaxation tests and investigated
the residual stresses of Hercules AS4/3501-6
composite during the cure by analyzing two
dimensional and axisymmetric problems.

The objective of this research is to investigate
the residual stresses occurring in a laminated
cylindrical shell during the cure by deriving an
incremental viscoelastic constitutive equation and
by performing the finite element analysis. The
viscoelastic data of Hercules AS4/3501-6 pro­
vided by Kim (1996) is used in calculations. The
viscoelastic finite element program will be devel­
oped on the basis of a 3- D degenerated shell
element and the first order shear deformation
theory, and is validated by comparing with an
one dimensional exact solution. The effect of
temperature, degree of cure and chemical shrink­
age on the viscoelastic residual stresses induced in
the laminated shell during the cure is studied. The
effect of cooling rates and cooling paths on the
residual stresses is also examined.

2. Viscoelastic Constitutive Equation

A linear viscoelastic constitutive equation to
predict the relaxation of residual stresses induced
in composite shells during cure can be expressed
by the following hereditary integral (Flaggs and
Crossman, 1981 ; Lin and Hwang, 1989) :

i t sst
Oi= 0 CIj(a, T, t-r)~r,

(i,j=I,2,···,6) (1)

Sj = Cj- !3jLlT - 7)jLla (2)

where 61 and Cj represent stresses and strains, and

CIj' !3j, and 7Jj represent relaxation moduli, coeffi­
cients of thermal expansion, and coefficients of
chemical shrinkage, respectively. LlT and Lla indi­
cate the changes in temperature and degree of
cure. t denotes time and t: is a dummy variable for
integration. Since thermoset composite materials,
which are softened at the beginning of cure,
become to be hardened as cure process goes on,
mechanical properties of the thermoset composite
materials are generally changed during manufac­
turing process. Lee and Springer (1990), and
White and Hahn (1992) showed that they de­
pended on the degree of cure. Hence, if the degree
of cure changes, the composite material will show
therrno-rheologically complex behavior which
eventually makes it very difficult to solve a prob­
lem. But, if the degree of cure, denoted by a" is
maintained to be constant, the material can be
assumed to be thermo-rheologically simple. By
using a temperature-dependent reduced time, this
postulate makes it possible for Eq. (I) to be
expressed in the following form :

i t a-r
61= 0 CIj(a" To, e;t-.;') :~ dr (3)

where To indicates the reference temperature, and
.; represent the reduced time defined as

~Lit ds ~r=ir ds (4)
- 0 aT(a" T(s))' 0 aT(a" T(s))

where aT represents a shift factor expressed as a
function of temperature at the constant degree of
cure a,. Because generalized Maxwell models
consisting of negative exponential functions are
known as good approximations for the response
of viscoelastic materials, the time-dependent
relaxation moduli CIj in Eq. (3) can be expressed
in a finite exponential series of the form:

~ - N W ~)
CIj(~)=CIj+CIj~ mexp(-

m=l rm

where CIj represent fully relaxed moduli and CIj .

=C~-CIj where C~ represent unrelaxed moduli.
rm and Wm are relaxation times and weighting
factors at the given degree of cure. All parameters
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(13)

described above are determined from a viscoelas­

tic experiment. Substituting Eq. (5) into Eq. (3),

the viscoelastic constitutive equation is written as

interval L1t, Eq. (12) can be approximated as

.1';-1+41 = A!-
aT

We will now proceed to simplify the hereditary
integral appearing in the constitutive equation in

the manner proposed by Henriksen (1984) and
used by Kennedy and Wang(l994) and derive a

recursive formula in which the solution at current

time t + L1t can be obtained using the solution
known at the previous time t. The constitutive
equation at current time t+ L1t can be written as

follows.

,..1+41_ (t+4IC'"of/ d r
vi -)0 Ij or

N (1+41-
+ :fl)O CIjWmexp

gt+4t_e of r-"----"--)~a t:
t"m r

Now let us define an equation as follows.

(7)

Using Eqs. (8) and (It), the first integral in Eq.

(10) is expressed as

£t _ gt+41_gr of/
11= CIjWmexp( - - )~o r

o rm r
L1gl+41 £1=exp( - ) CIjWmexp

t"m 0

~ofr
(- r

m
)~t" (14)

e l +4t
=exp( ---'>--) (JI~

t"m

In order to solve the second integral in Eq. (9),

let us assume that the change in the strain is

constant in an interval oft<r<t+L1t. Namely,

a-' -1+4t - t
~- e) - ej constant (15)ar L1t

Using Eqs. (13) and (IS), and assuming that
moduli and weighting factors are constant for L1t,
the second integral in Eq, (10) can be derived as
follows.

(18)

(19)

L1gl
+
41 ]

t"m )

(20)

Therefore, substituting Eqs. (14) and (17) into

Eg. (10) gives

Integrating this equation gives

_ -1+41 t"m [ ~ ]IZ-CI) WmL1~1+4t I-exp(- rm )

(fr41- f/)
=cft4Iri,+41L1£r41 (17)

where ri,+41 and .1£;+41 are defined as

(9)

(8)

(2)

This can be written in two parts.

£1 el+41 er 0-'
(11+41= C W exp( 'i r:« )4Ldr1m 0 I) m rm or

11+41- gt+41_gr of,'
+ CIjWmexp( )~oJ r

1 rm t"

By assuming that the degree of cure and the

temperature are constant during the small time

and then the second integral in Eq. (7) at time t

+L1t can be defined as

( 10)

For a sufficiently small time increment L1t, the
reduced time can be expressed as

~t+41= et + L1et
-l-
4t (11)

and the increment in the reduced time L1~ is

defined as
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(22)

where the initial values of r~ and ofm at time t=O
are Wm and 0, respectively. From a computational
point of view, Eq. (20) is much easier to deal
with than Eq. (9) because Eq. (20) requires a
knowledge of quantities at the previous time t,
while Eq. (9) requires a knowledge of quantities
over the complete history of the response of the
material. Substitution of Eq. (20) into Eq. (7)

leads to

Similarly, the stresses at time t can be expressed as

[

t ag-' N
alt= Cij~r+~al~

o or m=l

By subtracting Eq. (22) from Eq. (21) and using
Eq. (15), incremental stresses during the time
interval LIt can be obtained as follows.

LIa\t+At= a,t+At_at

=[Cijt+At+ l:/n\+AtCftAt]LIg-j+At (23)

N [ LIf+At ]+~l exp ( - rm ) - I a,~

This is a viscoelastic constitutive equation that
represents the relationship of incremental stresses
and strains during the small time step LIt. The
stresses a,~ can be recursively calculated by Eq.
(20). As mentioned above, the material is thermo­
rheologically simple when the degree of cure is
constant. Hence, Eq. (20) is valid only for the
constant degree of cure. If the relaxation times rm

depend on the degree of cure (Kim, 1996), Eq.
(23) must be modified. If the degree of cure is
assumed to be constant during the small time step
LIt although it changes during entire curing proc­
ess, Eq. (23) can be approximately used with
modifications such that r~ and r~+At are inserted,
respectively, instead of rm in Eqs. (14) and (16),
because Eq. (23) is the relationship of in­
cremental stresses and strains during the small
time step LIt. In this case, Eqs. (18), (20) and

(23) can be rewritten as

LIa,t+At= alt+At_ alt

=[Cijt+At+ l:/n\+Atq+At]LIg-j+At (24)

N [ LIgt+At ]+~l exp ( - r~ ) - I a,~

where

LIgt+At
a~At=exp( - r~ ) al~

+rn\+AtCftAtLIg-rAt (25)
t+At [ Agt+At ]T"lt+At_Wt+At rm I (,u )

l m - m LI~t+At - exp - r~+At

(26)

For the sake of simplicity, Eq. (24) can be
written in the symbolic form.

LIat+At= C'":" LI g-t+At +H'":" (27)

where C and H are called a time-dependent
stiffness matrix and a hereditary stress vector,
respectively, whose components are defined as

(28)

(29)

Note that the viscoelastic formulation given by
Eq. (27) can be applied for the case of varying
viscoelastic parameters (eij, CIj, rm) as well as
constant parameters and will be very useful in
applying for geometrically nonlinear analyses
since it is defined as the incremental stress-strain
relationship.

3. Viscoelastic Finite Element
Formulation

An equilibrium equation at time t+LIt using
the principle of virtual work is expressed as

18 (cHAt) Tat+AtdV = aWt+At (30)

where the superscript T means transpose, V and
A represent volume and area, and 8W is the
external virtual work defined as

8Wt+At=18 (u'":") Tt;+AtdA

+18 (u'":") Tf1,+AtdV
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1 o (Llet+Jt) T«l+ LI(1t+Jt) dV =oWt+Jt

(32)

where the superscripts indicating the time are

dropped hereafter for the sake of convenience, the

stress and strain now refer to the global coordi­

nates and D, FTc and F H are, respectively, defined

as

where u, is' and i b represent displacement, surface
traction, and body force vectors, respectively.

Note that aut is given as zero because the varia­

tion is taken about the configuration at time t. To

use incremental stresses and strains, Eq. (30) can

be rewritten as

(38)

jan, 1981), the incremental displacement vector

Au in an isoparametric element with p nodal

points is defined as (Bathe, 1982)

PIP
Llu= ~Nk(e=, Tj) Llill'+-~Nk(e=, Tj)tkt LlVk

k~1 2 k~1

(37)

where e=, Tj, t; denote the local coordinates of the

element and L1ilk, N", tk represent the displace­

ment vector, shape function and thickness at

nodal point k of the element, respectively.

LlVk represents, at nodal point k, the difference

between unit vectors normal to the shell mid­

surface at time t + LIt and at time t, that is, V~+Jl

- V~. The strain-displacement relation is written

in the tensor form :

B(LJu)=NB(Lli1), B(Lls) =BB(LJil) (39)

Expressing a virtual displacement vector and a

virtual strain vector by a function of a virtual

nodal displacement vector using Eqs. (37) and

(38) gives

where Nand B represent a shape function matrix

and a displacement-strain matrix, respectively

(Bathe, 1982). By substituting Eq. (39) into Eq.

(33), the viscoelastic finite element formulation is

summarized as

(31)

= 1B(Llut+4t) Tf,+JtdA

+ 1 B(LlutH t)Tf1,+JtdV

where aet is also zero because the variation is

taken about the configuration at time t. By trans­

forming Eq. (27) from material coordinates (on­

axis) of a shell element to global coordinates and

then substituting it into Eq. (32), the following

equation can be obtained.

1 B(LJe)TDLledV=Bw-1B(Lle)T(1dV

+ 1B (LIe)TDFTcdV-1B(Lle) TFHdV

(33)

D=QCQr

Frc=QLleTc
FH=QH

(34)

(35)

(36)

(40)

where the time-dependent stiffness matrix K and

the force vector F are given by

After solving Eq. (40) with boundary conditions,

displacements, strains and stresses at time t+Llt

are updated as follows.

Kt+Jt=1 BTDI+JtBdV (41)

Llfl+Jt=Rt+Jt-1BT(1tdV

+ 1 BTD1+J1FttJldV-1BTF~+JldV (42)

Rt+Jt=1NTf,+4tdA+ 1 NTf1,+4tdV (43)

where Q represents a matrix that transforms the

stress-strain law from the material coordinates to

the local coordinates of the element and then from

the local coordinates to the global coordinates

(Bathe, 1982). The modulus C in Eq. (34) is

recalculated under the assumption that the stress

normal to the shell surface is zero, and H is given

by Eq. (29). Aerc represents a vector including

both the thermal and chemical shrinkage strains

defined by the second and third terms in the right

hand side of Eq. (2).

On the basis of a 3-D degenerated shell element

and the first order shear deformation theory

(Chao and Reddy, 1984 and Panda and Natara-

ut+Jl=ut+Llut+Jt

et+Jt=£t+ Llst+Jt

a t+Jt= at + aa":"
(44)
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Table 1 Cure kinetics constants of Hercules 3501-6

resin

Table 2 Relaxation times and weighting factors at

reference degree of cure (ar=0.98)

R(J/moIOK) 8.314x 1()3

AI (min-I) 2.10IxlQ9

Az(min-I) -2.014X 109

Aa(min- I ) 1. 960x 105

LJEl (J/mol) 8.07X 104

LJEz(J/mol) 7.78x lQ4

LJEa(J /mol) 5.66x 104

4. Degree of Cure, Shift Factor, and
Relaxation Time

m fm(min) Wm

I 2.922137e+ I 0,0591334

2 2.921437e+3 0.0661225

3 1.82448e+5 0.0826896

4 1.103105ge+7 0.112314

5 2.8305395e+8 0.154121

6 7.9432822e+9 0.2618288

7 1.953424e+II 0.1835594

8 3.3150756e+ 12 0.0486939

9 4.9174856e+ 14 0.0252258

(48)

where the values of constants a, and az are 1.4 and

0.0712, respectively, and T r denotes the reference

temperature determined as 2YC. The relaxation

time fm is a function of the degree of cure and

experimentally determined as (Kim, 1996)
fm (a) = IO[Log(rm(a,)}+(f(a) - (a-",lLog(Am)}]

f(a) =0.0536+0.0615a+O.9227~ (49)

A=~
m fm (ar)

where the reference degree of cure ar is 0.98. The

relaxation times fm (ar) corresponding to ar and
the weighting factors and the weighting factors

Wm are presented in Table 2.

defined as (Kim, 1996)

5. Numerical Results and Discussion

(45)

(a~0.3)

(46)

(a>0.3)

The degree of cure a is defined as the ratio of

the heat of reaction released up to time t and the

total heat of reaction (Lee et al., 1982 and Dusi et

al., 1987). If the degree of cure is zero, it means

that composites are uncured. If the degree of cure

is one, it means that the composites are fully

cured. The degree of cure at time t is calculated by

a(t) = [~t

Since Hercules AS4/3501-6 graphite/epoxy com­

posite is used in this paper, the rate of the degree

of cure for Hercules 3501-6 resin is determined

experimentally as below (Lee et al., 1982).

Constants k., kz, ka are defined as

where R is the universal gas constant, and Al> Az,
Aa and L1El> LJEz, L1Ea represent the pre­
exponential factors and activation energies of

which values are presented in Table I. The shift

factor aT of AS4/350 1-6 composite is functions of

the degree of cure and the temperature, and

kl=Alexp( -LJEdRT)

kz= Azexp ( - LJEzlRT)

k, = Aaexp ( - L1Ea/RT)

(47)

Material properties of Hercules AS4/3501-6

composite used in the analysis are presented in

Table 3. These values are used to calculate the

moduli CIj given by Eq. (5). Since stress relaxa­

tion in the direction of a fiber is negligible, the

components C lI , C IZ, and C I3 related to the fiber

direction are assumed to be linearly elastic. The'

fully relaxed modulus CU' is experimentally deter­

mined by 1/7 of the unrelaxed moduli C~ (Kim,

1996). The element used for the finite element
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Table 3 Mechanical properties of AS4/3501-6 used

in calculations

Young's modulus, Ell 125.38 GPa

Young's modulus, E22 8.1 GPa

Young's modulus, E33 8.1 GPa

Shear modulus, G12 4.1 GPa

Shear modulus, G13 4.1 GPa

Shear modulus, G23 2.75 GPa

Poisson's ratio, 1112 0.25

Poisson's ratio, 1113 0.25

Poisson's ratio, 1123 0.47

Thermal expansion coeff., /31 0.5e-6 IrC

Thermal expansion coetf., /32 35.3e-6 IrC

Thermal expansion coetf., /33 35.3e-6 Irc

Chemical shrinkage coetf., 7/1 -1.67e-4

Chemical shrinkage coetf., 7Jz -8.8Ie-3

Chemical shrinkage coetf., 7/3 -8.8Ie-3

analyses is a 8-node degenerated shell element

with five degrees of freedom per node and 2 X2 X

2 Gauss integration points are used at each layer

of the element to prevent shear locking. Because

the accuracy of numerical results depends on the

time increment Llt, the finite element analyses are

executed for three time increments Llt= 10 sec, 30

sec, and I min for the purpose of examining the

convergence of numerical solutions and it is

found that there is no big difference between

them. Therefore, to save computational time, the

time increment Llt= I min is used for the numeri­

cal analyses presented below.

In order to verify the finite element program

developed in this study, the following procedure

is carried out. Since there does not exist an exact

solution available for comparing with results

calculated in this study, a laminated plate as

shown in Fig. I is presented, of which both ends

are clamped. The length, width, and thickness of

the plate are 100 mm, 10 mm, and 2 mm, respec­

tively, and fiber orientation is 900 normal to the

x-axis. If the degree of cure is constant and the

temperature is given by LlTh (t) where h (t) is a

2mm

IOOmm

Fig. 1 Geometry of the clamped laminated plate

-6,-----------------,
[90] (X = 0.9, lIT = 170·C

""'"~. . .ewr'tf
-15

E1<acl SoIltiatI _e_ Fui1e EImm AlJlIysis

j -~

TIme,t(um)

Fig. 2 Comparison of the finite element alaysis with
the exact solution for the transverse stress in
the laminated plate

unit step function, the exact solution for a one

dimensional problem can be obtained from Eq.

(6). The total strain C2 in Eq. (2) is given as zero

because the ends of the plate are clamped. Neg­

lecting the deformation due to the chemical

shrinkage and substituting Eqs. (2) and (4) into

Eq. (6) and integrating it, the one dimensional

exact solution is given as

a~=[E22+E22~ Wmexp( __t -)] (- 132LlT )
m=1 TmaT

(50)

where the subscripts 2 represent the direction

normal to the fiber orientation and E represents

Young's modulus. For the finite element analysis,

the plate shown in Fig. I is divided by 10 meshes

in length and 2 meshes in width. When the degree

of cure a and the temperature change LlT are 0.9

and 170·C, respectively, the results calculated by

Eq. (50) and the finite element analysis are

compared in Fig. 2. The result of the finite ele­

ment analysis is calculated at the center of the

plate. Because two results agree well each other as

shown in Fig. 2, validation of the finite element

program developed in this paper can be accom­

plished.
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25020015010050
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Fig. 3 Geometry of the laminated semi-circular
shell

Fig. 5 Comparison of the viscoelastic transverse
stress with the linear elastic transverse stress
during cure

200 1.2

................. 1.0

2: 150,..
0.8f

I 0.6 0...
-T~ 0.4 j

Oegloeofaue

0 i:2.00 50 100 150 200 250

lime,t(um)

Fig. 4 The temperature and the degree of cure dur­
ing cure

To predict residual stresses occurred in a
laminated cylindrical shell during cure, the
laminated semi-circular shell as shown in Fig. 3
was selected. The radius, length and thickness of
the shell are 100 mrn, 200 mm and 2 mm respec­
tively. The laminated shell consists of 4 plies. All
four edges of the shell are given as free and
temperature distribution is assumed to be uni­
form. For the finite element analysis, the laminat­
ed shell is uniformly divided by 8 X 8 elements.
Total numbers of the elements and nodes are 64
and 225, respectively. A cure cycle used in the
calculations is presented in Fig. 4. Total cure time
is 300 minutes, and temperatures at the first dwell
known as a consolidation stage and at the second
dwell known as a cure stage are defined as 116·C
and 177·C, respectively. The degree of cure calcu­
lated for this cure cycle is presented in Fig. 4 as
dot lines and increased rapidly near the time

about 100 minutes.
To investigate the viscoelastic effect on the

residual stresses in the laminated shell during the
cure, the analysis is performed for [0/90]. lami­
nate where a positive fiber orientation 8 is
shown in Fig. 3. Numerical results calculated for
both viscoelastic and linear elastic analyses con­
sidering thermal deformation and cure-induced
chemical shrinkage simultaneously are presented
in Fig. 5. The transverse stresses normal to the
fiber orientation are calculated at the first ply 0°
and near the center of the shell, and the results
show that they are quite different as shown in Fig.
5. Especially, it is found that the viscoelastic stress
is considerably relaxed with the advance in cure,
and that the final residual stress for the viscoelas­
tic analysis is much lower than that for the linear
elastic analysis. Generally, calculating the resid­
ual stress using the linear elastic analysis, the
stress is assumed to be free at the second dwell
called the cure stage and calculated only at the
cooling stage. Under this assumption, the calcu­
lated linear elastic stress is 39.08 MPa during
cooling as shown in Fig. 5 and the final viscoelas­
tic stress is 34.0 MPa at the end of cure. This
indicates 15% difference with respect to the vis­
coelastic stress and, in addition, the linear elastic
analysis has disadvantage that the residual stress
can not be calculated in the entire curing process.
But, the viscoelastic analysis makes it possible to
predict the residual stresses in the entire curing
process. Especially, from the viscoelastic result in
Fig. 5, the residual stress at the second dwell is
approximately 4.1 MPa. Although this value is
not big, it may cause matrix cracking in the
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Fig. 6 Residual stress development at the first ply (0
degree) during cure
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Fig. 9 Longitudinal stress development at the first
ply (30 degree) for various cure cycles
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Fig. 10 Transverse stress development at the first
ply (30 degree) for various cure cycles
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Fig. 7 Residual stress development at the first ply
(30 degree) during cure
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Fig. 11 Shear stress development at the first ply (30
degree) for various cure cycles

the cure for laminated shells consisting of [0/90J s

and [30/-30J s stacking sequences. The results are
presented in Figs. 6 and 7 where (Jxx, (Jyy and (JXY

represents longitudinal, transverse and in-plane

shear stresses, respectively. The stresses are calcu­
lated at the first plies (0° and 30°) and near the
center of the shell. As shown in the figures, the

longitudinal and transverse stresses for the cross-
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~
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Fig. 8 Cure cycles with different cooling paths
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laminated shell during cure. The reason for this is
that the transverse strength of composites becomes
to be rapidly decreased as temperature increases,

and that mechanical properties of the composites
change very complicatedly when the degree of
cure changes rapidly as shown in Fig. 4 and the
transverse strength is expected to be quite small,

specially, near the cure time 100 minutes.
Next, the residual stresses are calculated during
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Table 4 Comparison of final residual stressfor cure
cycles with different cooling paths

Cure
Longitudinal Transverse Shear

cycle
stress, an stress, ayy stress, axY

(MPa) (MPa) (MPa)

A -21.289 21.168 -12.208

B -20.737 20.619 -11.892

C -20.416 20.300 -11.708

D -20.330 20.215 -11.658

E -20.369 20.253 -11.681

ply laminated shell are greater than those for the
angle-ply laminated shell, whereas the in-plane
shear stress is greater in the angle-ply laminated
shell.

Finally, in order to investigate the effect of
cooling rate on the residual stresses, five cure
cycles are selected as shown in Fig. 8 and they are
given to be equal from the beginning of the cure
cycle to the end of cure stage. The results of
stresses analyzed for [30/-30J. laminated shell
with different cooling paths are presented in Figs.
9, 10 and II and the stresses are also calculated at
the first ply and near the center of the shell. The
final residual stresses for these cure cycles are
compared in Table 4. Comparing the results of
the cure cycles A, Band C, the stresses are slightly
reduced as the cooling time is increased. The
cooling times of the cure cycles C, 0 and E are
fixed as 180 minutes and only their cooling paths
are different. In this case, as shown in Table 4, the
stresses for the cooling path 0 are smaller than
those for the paths C and E. Therefore, an opti­
mal cooling path showing the minimum residual
stresses is expected to exist near the path 0 if the
cooling time is fixed as 180 minutes.

5. Conclusions

In this study, the viscoelastic finite element
analysis has been performed to investigate the
residual stresses occurred in laminated shells
during the cure. The incremental viscoelastic
constitutive equation that can describe the stress
relaxation during the cure is derived as a recur-

sive formula which can be used conveniently for
a numerical analysis. The stress relaxation is
defined as functions of the degree of cure and the
temperature. The finite element analysis program
is developed on the basis of the 3-D degenerated
shell element and the first order shear deforma­
tion theory, and is verified by comparing with the
one dimensional exact solution.

To investigate the viscoelastic effect of on the
residual stresses in the laminated shell during the
cure, both the viscoelastic and linear elastic ana­
lyses are performed for [0/90J. laminated semi­
circular shell considering thermal deformation
and chemical shrinkage simultaneously. The
results show that there is big difference between
the viscoelastic stresses and the linear elastic
stresses. The longitudinal, transverse and in­
plane shear stresses are calculated and compared
during the entire curing process for [0/90J. cross­
ply and [30/-30J. angle-ply stacking sequences.

Finally, the effect of both the cooling rate and
the cooling path on the residual stresses is inves­
tigated for five cure cycles with different cooling
paths. The residual stresses calculated for the
cooling times 60, 120 and 180 minutes are shown
to be slightly reduced as the cooling time is. in­
creased. The results show that the final residual
stresses also depend on the cooling path when the
cooling time is fixed.
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